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Abstract

Siam  most real-wor]d applications of classific:l-
~ion learning invo]vc  c(~t~iintlotls-valllcd attribatcs,
properly addrcssinf!, the clisctcti7ation procms  is an
important problem. ‘J”his  paper addresses the LISC
ofthcc.ntmpy  ll~it~it~~izati ot~he.tlristicf or(liscrctiz-”
in~ thcr’ange  of a coIltintlc~Lls-  va]Llc[l  atll’ibLltcil~to
multiple intervals. Wc briefly present theoretical
cvidcncc. for the all[lro~~riaterlcss  of this hcaristic
fot- usc in the binary cliscrctization algorithm used
in 11)3, C4, (~AKI’,  and other learning algorithms.
‘J’lIc results sc.rvc to justify cxtc.ndin~ the algorithm
toclcrivcl lllllti]~lci lltcrvals.  Wcformallydcrivca
critcrionbnscd  ol~tl~c~~~il~ilI~LII~~ (lcscril~tiol~lc[~gtl~
princip]c for (Icci(ling  the patlitionit)g of intervals.
WC clcmonstralc  via empirical evaluation on scwral
real-worlcl clata sets that better ciccision trees arc ob-
tained using lhc new nlulti-inter’val algot-ithm.

1  lntrodndion
[~l:lssific:iti()  lllctltllitJg alg()ritl]l]ls  ty[~ically aschcaristicsto
gaidc the.ir seal-ch through the large space of possible rclat ions
bc[wccn combinations of atttibutcvalucs  and dasscs.  Onc
such heat’islic Ltsc.s the notion of selecting attribatcs  locally
nlinitni?ing  the information entropy of the classes in a data set
(cf. tl]c 11)3  algorithm[131 an(i its cxtc.nsirms,  e.g. G11)3  [21,
[ill) 3*[5],  at~cl~4[  15], CIAl{l' [l],  ~N2[3]:lt~(l otlIcrs).  Scc
[ 1 1; 5; 61 for a general ciiscassim of the attribatc  selection
problcm,

“1’he attrihutcs in a learning problem may be nominal (cat-
cgotical), orthcy may t>ccC)tltillLl(JLls  (tltltllctical). ‘1’hctcrm
“continumls” is used in the literature to rcfc.r to attributes
takinx on numerical values (integer  or real); or in gene.ral
an attribute with a linearly mxicrcd range of values. ‘1’tlc
above. nw.ntioncd  attribu(c selection process assamc.s that all
attributes aIc nominal. (I(~t~tir~LloLls-\’alllc(l  attributes arc di,~-
cw/iz.dpl-iorto  sc.lcction,  typical lyby  ~>arlitioll  itlgtl]cr:lIl~,c
oftllc atttibute  into subrangm. in.gmcral, a(lisctcti?:lliotl  is
silnply a lo~ical cmclition, in tcms of onc or more. at[ribatcs,
tlIal sc.rvcs to parlilion the data into at Icas[ two sabsck.

In this paper, wc focus mly on the discrctization of
colltirlll[)tls-valllc.cl attributes. Wcfirs(  prc.sent a rcsall aboat
the, i nfortnat  ion cat ropy mini tni~a[ion  hcarist ic for’ binary dis-
crcli~ation (twmintmval  splits). ‘I’hisgivc.s  us:

● a bc.ttcr ~]t~(icrstat~(l  ingof tilchcurislic  aa(i its bc. havior,
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● forttml  cvi(icncetilat  sapporlstilc  usage of tilchcuristic
in lilis context, and

● agaillit~c{)ltlpLltat  iorlalcfficictlcy  ti]atrcsLllts  itlsJlccCli Ilg
up lilccvaiuation process fOrc(JtltillttOLls-v:li Llcci  attrii}ute
discrct i~at ion.

Wc ti~cn nrocccd (CI extend the al~oritilm to dividcthc  rallgc
of a c(~ntintlotls-\’alLlcci at[ributc into multiple intervals ra(k
ti~at~just[wo.  Wcfirst  motivatcthcnc.cci  for such acapabil-
ily, ti]cn wciwcscat  the maltiplc interval gctlcraii7:ltioll, anti
finaiiy we present the cmpiricai  cvaiaalim  results confirming
that the nc.w capability {ioes in(iccd rcsLIlt in pr’oclacing  better
(iccisirm trees.

2  IIinary lliscretization
A cotltir~Llo~ls-vaillcci” atlribu[c  is typically (iisctcti~cci ciaring
decision tree gcnmtion by par~itioning its range into two
intervals. A threshold valm, T, fort }~ccoI~tit~LloLls-\ ’alLlc(l”
attribatc  A is cictcrtnincd, and the tc.st A < 7’ is awigncd  to
tllclcf!  branch while A > Y’ isassignccl  totllc.rigl]tl>r:lrlclll.
Wcc:lll sLtctla tllrcsllOlcl vaiLlc,  7', :tc//l/~c~i/tt.  ‘1’hismcthod
fm sclccling  a cat point is used in the 11)3 I 13] aigorithm  ami
its variants sLIcil  as GIIM*: [51, in the CAR’1’aigoriti~n~  [II,
an{i others [81. It can generally bc. useci in any al~oritilnl for
learning, classification trees or ralcs that handles continuoas-
valad attribu(cs  by quantizing their ranges into two intervais.
Altiloa~h liIc I’CSLIIIS  wc present arc appl icablc (o discrcli mt ion

down (incision  lrccgcncration.
ASSLIIDC  we arc to select an attribute for branching al a nocie

havingasd  Sof N cxami)lcs. 1+’orcaci] cotltit)lloLls-vaiLlcCi”
at{ribulc  A wc. sc.lcct tim’’bcst’’cut pr)in~!/A from itsrangcof
vniacs by cval anti ng eIIeIy c(iwlidatc CII/ point in tile ran~c of
vaiues. ‘1’im c.xampics arc first  sorlcci by increasing valucof
the at [rihutc A, nn(i  the mi(ipoint  bctwc.cn each successive pair
ofe.xamplcs  inti\csoltccls cquctlcciscv  al Llatcci asapotcntiai
cat point, ‘I’hus, forc.acil cotltillLloLts-\ aillc(lat ttitlLltc,N - 1
evaluations will take i~iacc (assuming tilat cxami~ics (io not
i]avc i(icntical  attribute vaiuc.s). lim caciI cvaiuatirrn of a
cancii(iate cat point 7’, tile ciata arc parlilioncci into two sets
and ti}c claw cnlmpy of tile resuiling parli (ion  is comptltcci.
Rccali, tilat tilis (iiscrcti  mlirrn  procedutc is imfmncxi  local] y
for every nmic i n t ilc tm.c.

l,ct 7’partiliontilcsct Scrfcxami>lc.s  into ti]csabsels  SI
ancl S2. l.ct tilcrcbc. k classes C), ..., (“k atl[i ]Ct ~’(~;,  S )

lrl’hctcstA  >7’stan(is for: “l\}c\’[ll~lc.c )fAisgrc:ltcrl }l:tt~T’”.
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l?igure  1: A potential within-class cut point

bc tbc proportion of examples in S that have class Q. ‘1’hc
class Ctllrojy  of a subset S is clctincxl  as:

k

i, 1

When tbc logarilhm base is 2, lint(S) mcasutcs the amount
of’ inforlnalion nccxlcd, in hil.s, to spmify the classes in S. ‘lb
cval uate the resulting class cat ropy after a set S is parlit ioncd
into two sets SI and S2, wc take lbc. wci~hled average. of tl}cir
Icsultinf: class entropic.s:
IMinition 1: lkw an examp]c  set S, an attribute A, and a CLIt
value Y’: 1 d S1 c S be tbc subset of example.s in S with A-
val LIcs < 7’ and S? = S – SI. ‘1’hc elms i@rwa/iml ctl/tO/jy
oftlte p{jttiiim illdl[ccd by 1’, A’(A, 7’; S), is defined as

L’(A,  T; S) : l;l’Jint(S,  ) -i 1:,’ }~nt(s?) (1)
.

A binary discrct int ion for A is clctcrmincd by sdcct  in.g the
cat point 72 for which .7!!(A, lj; S) is minitnal  amon~st all
the candidate cut points.

2.1 l)iscussion  of (ht Point Selection
One of the main problems with this selection criterion is that
it is rdativcly  expensive. Although it is polynomial in com-
plc.xit y, it must be c.valuated N - 1 times for cad attribute
(assuming thal the N examples have distinct valum).  Since
lnachi ne learning programs are designed to work with large
SC.(S of training data, N is typically large.. la the CaSC of :1
nominal (OI discrctizcd) attribute,,  this criterion requires only
a sinslc  evaluation of an ~-par[ition,  where T is the number of’
values of the nominal attribute. Iypically,  T << N. lIKICCCL
cxpcric.nm with IIX+-like algorithms confirlns that the.y run
sip, nificantly s]owcr when continuous attributes arc prcscmt.

‘1’IIC otllcr objc.ction  that may be raid is that the alp,orithm
has an inherent weakness in it that will cause it to produce
“had” cut points especially when there arc more than two
clawcs in the problem. ‘l’his ohjyction is based on the fact
(bat tbc al~orithm at(ctnpts  to mlnllnim  the weighted average
entropy of tllc two sets in the candi(iatc  binary partition (as
slIown in 1 iqual ion 1 above). ‘J’hc  cal point may there.fore
separate examples of one class in an atlcmpt  to n)inimi?c Illc
avcra~c  entropy. liigure 1 illustrates this situation. instead of
falling on onc of the boundarim 111 or 112, the cut point may
fall in bc.twccn so that the average. cnlmpy of both sides is
minim i~ccl. ‘1’flis woLIld  bc undesirable since it unnecessarily
separates examples of tk .mme  class, resulting in larger (and
lowcx quality [51) ttccs.

1 lowcver, neither of these objections turns out to be tr’uc.
‘J’tlc{)l-cnl  1 below S}IOWS  that I-cgadlcss  of bow many classes
there arc, and how they arc ciistributcd, the cut point wi~~ a/-
~tf~y.v  recut ml the lMH411dary  bclweett  t}tw CIOLTSCLV (see lMini-
tion 2 for a precise statement of what wc mean by a boundaty
point). ‘1’his is i adccd a cksirdhlc  properly of the bc.uristic
since it shows that the heuristic is “well-behaved” in terms
of the cut points it favours. 11 tells us that this heuristic will
never SCICCI a cut that is considered “bad” from (be tc.lcolog-
ical poin[ of vim’. III addition, this result will also help us
improve the efficiency of the. algorithm without chanp, in: its
function.

2,2 cut l’oinls Arc Always on IIoumlarim
We show that the value 7~ for attribute A that n]inimiy,cs
the average claw entropy I;(A, lh; S) for a training set S
must always bc a valm  between two examples of different
classes in the sequence of smlccf examples. 1 et A(c) denote
the. f’t-value of Cxampk  f! c s.

IMinition 2: A value T in the range. of A is a houndnrypoi~~l
lff’in the scqucncc  of examples sorted by the val LIc of A, Ilm.rc
exist two examples CI, c? c S, having different classes, such
that A(c 1 ) < 7’ < A(c2); and there exists no other example
e’ ( S SUCII  that A(el) < A(e’) < A(e2).

‘J’hcormn 1 If 7’ n~ini~~~izcs the HIC(I.$UW  1;(A, ~’; S),  ~~IC~~  ~’
is {i Imuttdary  pOinl.
l’roofi is ralhe.r lengthy and thus omitted; see [51. [1

Corollary 1 ‘1 h algori[hm used by 1/)3 for ftIIdiJlg a bimay
pattilion  for a contiIIuous  atfribufc w;II alw:iy.s parfition the
dala  on a fmuadaly  point in fhc sequcncc  of t/Jc examples
ordered by [hc WIJLIC Of fh:i[ a[(ribllfc.
l’roof:  l;ollows fmn ‘1’flcorcm 1 and definitions. [I

‘J’hc first implication of Qmllary 1 is that it serves to sup
port the usage of the entropy nlinitnizition  heuristic in tbc
context of discrctimt ion, We. use the i nfot-mat  ion cat ropy
heuris[ic  because we know, intuitively, that it pmsc.sscs some
of the properties  that a (Iiscrilllitl:lti[)tl  mc.asure. shoLIld,  in
principle, possess. llowcvcr, that in itsctf does not Iulc out
possibly undcsirab]c  situatims,  such as that dcpictd in l;i2-
ure 1. ‘J’hc Qmllary  states that “obviously bad” cuts are never
favourcd by the heuristic. ‘1’his result serves as further  formal
support for using the heuristic in the context of discrcli?ation,
since it tells us that tbc heuristic is well-bc.tlavccl from tbc
teleological point of view.

la addition, (krollary  1 can bc used to increase (IIC  effi-
ciency of the algorilhll) without changing its cffccls  at all.
After sorting the examples by the value. of the attribute A,
tllc algorithm need only examine the, b boun(iary points rather
than :ill N - 1 candidates. Note that: k 1 < b < N - 1.
Since. typically k << N wc expccl si~nificant  colll]~llt:ltiol~al”
savings to result in general. Wc lIavc demonstrated significant
speedups in terms of the number of potential cut points cva\-
uatcd in [71 for tllc 11>3  algorithm. 11)3 partitions the range.
of a c{)t~til~~loLls-v:tlllccl  attribute into two intervals. Algo-
rithms th:it extract multiple intervals using a gc.tler:lli7,ati(Jll of
this procedure (such as the one presented in the next section)
achic.vc higher spccdLlps. Algorithms that search for rules
ratbcr than decision tree.s also spend more effort on discrctiza-
t ion. ‘1’hc computational spe.cdup in the evaluation process is
only a side bc.ncfit of (kmllnty 1. 11s sclmntic  si.gnificnncc



. is our focus in this papct’ since it justifies our gencraliziag the
same alp,orithlll  10 gcnclale multiple intervals rather than just
two.

3 Generalizing the Algorithm
(’omllary 1 also provicks sLlpport for cxtencting the algorithm
to extract multiple intervals, rather than just two, in a single
discrct i ?al ion paw. ‘1’he nmtivation for doing this is that
“bctlcr” trees arc obtaincct2.

‘1’lm  training set is srrrtd once,  then the a lgor i thm is  appl ied

rccursivc]y,  always selecting the best cut point. A Ct’itct’ion is
appl id to dcciclc when to refrain from applying fLlrthm  binary
partitioning to a given intelval. ‘1’bc fact that only bollndat’y
points arc crrnsiclcrcd makes tbc top-down i ntcrval ctcrivat ion
feasible. (since the algorithm never commits to a “bad” cut at
tbc top) and reduces cmnpLltatim~al  effort as described earlier.

‘lb propcdy cicfinc such an algorithm, wc need to forlnLl-
latc a criterion for drxidiag  when to refrain from partitioning
a given sc.t of examples. ‘1’hc critcricm  neecls to bc wcll-
princil)lcd  and tllcorclicallyj tlstificd.  limpirical tests arc later
used to verify that the assumptions behind thcjustification  arc
appropriate.

Wtly is tk derivation of multiple ranges rather  than bi-
nary ranges more advantageous from a tree gene.ration pcr-
spc.ct ivc? Oflcn,  the “i ntcmst in~” range may bc an i ntcrnal
interval within the attribLltc’s range. ‘J’bus, to get to such an
intcnal, a binary-interval-at-a-time approach leacls to unnec-
essary and excessive partitioningof  the examples that arc mlt-
side. the intc.rval of intc.rest. I/or example, assLlnm  thal for an
attt’ibLltc  A with values  in [0, 40], tllc sLlbrange  12 < A $ 20
is of intcxcst. ASSLInW that A’s range is cliscretimi  Into:
{(- CO, 12), [12, 20), [20, 25), [25, m)}. GivcxL an algorithm,
like GI113*  [51, that is capable of filtering out irrelevant at-
tribute. values, it is in principle possible. to obtain tlm (iczision
tree of IJigurc  2(a). ‘1’bc at[ributc sclccticrn algorithm dccidcd
that only two of the four availahlc intervals arc. relevant. ‘1’hc.
cxanlplcs oLltsidc this interval  are groLlpcd in tk subset !:I-
bckct S in the figLwc.

llsing  only a binary interval discrcti~ation  algorithm, in
order to sctcct oLIt these two ranges the decision tree shown
i n 1 ;igLlrc 2(b) would bc gcncratc.d. Note that the, set S is now
LInnccc.ssari]y partitioned into tbc two sLlbscts S1 and S2. b’or
tbcfirst trm, tlw algorithm has the option of partitioning S latcl”
usinp. some other, perhaps more appropriate, atlribLltc. ‘1’his
option is no longer available in the scconcl sitLmticm, and the
choice of future attributes will bc based on smaller subsets: S1
and S2. lkscntial]y,  this leads to the same sorl of problems as
tbosc caLIscd by the irre/evatll tj(//i/e,!l~ro/~/cttl cliscussc.d in 12;
51. ‘1’hc.  details of how GIIM* deals with this problcln and
how only a subset of the. valLlcs arc branched on is beyond tllc
scope of this paper (see [51 for details.)

3.1 To (:ul or not 10 Cut?  ‘1’hat  is the Question
[;ivcn the set S and a potential binary partition, nT, specified
on .$ by the given cLlt valLlc  ~’ of attribLltc A, wc need to
clccidc whether or not to accept the partition. ‘1’his problem
is naturally forlnulatcd as a binary clccision  problcm:  accept

2[)nc II-CC  being “bctkv” that another ia this conkxt  means tlmt
il is smaller in si7c and that ils (ctnpirically cstimlcd) error ralc is
lower. in [41 wc addrcssthc meaning of “bct[cr” mm formally. Scc
[5] for Iatlttcr  details.

(a) I (b)
l;igurc. 2: IIccisinn ‘Ikccs ancl Multi-interval I)iscrcti~ation.

or reject ml,. 1.et 117’ bc the hypothesis that ml, induces if it
were accc.ptcd. ‘1’hat  is, 11?’ is thcc]assifict  that tests the value
of A against 2’ and them classifies examples that have value
ICSS than 71 according to tbc examples in E for which A-V:dLIC
< 7’. Similarly, let N1’ rcpresc.nt  the null hypothesis; that
is the h ypothcsis that would  resLllt if n~ Wet-c rcjcctcd. ‘1 ‘bus
N7’ would classify all examples according to the classes in
E witlloLlt cxan}initlg  the valLlc of A. Since accept or tfjcc!
are the. only possible actions, one of ttLcnl nlLIst be the correct
choice for this sit L)at ion; the otbcr is incorrect. Of coLlrsc  we
have. no way of directly deciding which is correct.

1 .e.t dA bc the decision to accept t}lc pal tition ~T, [II)CI  ]C(

d~l rcprcscnt  rc:jccting it, ‘1’bc set of possible ctccisions in this
situation is 1) z {dA,  d~t} and WC. have a binary  decision
problem to solve. If wc assign a cost to oLlr taking the wlong
decision, then the cxpcctcd cost associated with a decision
rule that selects  be.twccn {dA, d}~} is cxpcctcd  to bavc. cost:

]] , c11]’rob{dA A ]T~’} -1 c221’rob{dI~  A NT’}

-1 c)TProb{dA A NT} -1 cl, ]’rob{d~{ A ~1~’)

where c1 1 ancl CIZ represent the costs of making the. cm red
choice, and c1l and c21 arc the costs of making the wrong
clccision. ‘Ibis  is the eqmled  IIc{ye.$ risk  associated with
whatcvct’  decision rLllc is being used to SCICC1 onc of {dA, d~}.
‘1’hc Baycs decision criterion, calls for selecting the decision
ILIIC that nlininlizes  the expected cost.

Since wc clo ant know what valLIcs  to assign to clz and
cl], wc rcsm t to the uniforll~  crmr cost assignment. If we
let c,, : c~2 = () and let et? L czt = 1, then nlini-
llli?ill~ tk ])aYCS  ]iSk dLICCS to a ({CCiSiOIl  IIIIC kILOWI)  aS

l’rcrbabil  it y-of- I hror[litcrion  (1’1 E) 11 ?1 which calls for min-
imizing the probability of making the “wrong” ckcision. SLlt>-
scqucntly, it can bc shown via a simple ckrivation  [ 12] that the
l{aycs decision criterion rcdLlccs to adoptin~  the decision rule
which, given data set S, selects the. hypothesis 117’ for which
l’rwb{l/7’lS} is maximum among the competing hypotheses
[ 121. Wc refer tn this decision cri{crion  as the B(lyesiatl  IW
cisim Slmlcgy.  ‘1’his  strategy is also known as the Imximut)l
a pmteriori (MAP) critc.rion [ 12], which in tLlrn is cqLlivalcnt
to l’l K.

lior our (iccision problem, tile llaycsian decision strategy
(as well as MAI’  and 1’IK) calls forsctcctin gthcdccisiot~
d  c l)tllat c()rre.s~~()n(ls  t()ttlc  llyl]()tllcsis  witlLtllc ll~:lxit~~al
probability given a data scl S: thLIS  WC ShOLlld  ChOOSC dA
if :Lncl only if 1’rob{117’1  S} > l’rob{N!/’l S}. If wc bad a
way {~ f(lctcrtl~it~it~ g,tllcab()\'c  tw'oprc)bat>il  iticsoLlr  problem
would bc solved: simply chmscthc hypothesis that has the
higher probability given tllc d:ita, and IIaycsian  decision the-
ory guarantees ttlat this is tbebcst (n~inin~Llln risk) strategy.
Unfortunately, thcl-c. is no easy way to cmnpLltc.  these probabil -
iticsctircctly. }Irrwcver, wc shall adopt an approach that will
allow LIS to itditerlly  estimate. which probability is greater.



3.2 ‘1’hc  Minimum lhxcription  1 .cnglh l’rinciplc
‘]’hc lllinin~um dcscxiption lcng(h of an objcc(  is dc.fltd  10 b~
tlIc nlinimum  number of bits required to uniqLmly specify that
objcc.( out of the univmc of all objects.

WC shall SIIOW that in the case of out decision problcm,
wc can employ  the Minimum IJcscription 1 zngth  I’rinciplc
(Ml)] J’) to make. a gLmss at the hypothesis with the higlwr
probability, given a fixed set of examples. ‘1’hc Ml)] J’
is  a p,c.nctal  p r i n c i p l e  t h a t  i s  intcnclccl 10 e n c o d e  tbc nalu-

ral bias in scicncc towards simpler tbcorie.s that explain the
Salnc body of data. q’hc MIJI  J’ was ol-i~i nail y i nt roduccd
by Rissancm 1171 an(i has later been adoptml  by others 114;
I 81 for usc in incluction.  We cicfinc it as dcfinccl in I 141:
l)cfinilion  3: Given a set of competing hypotheses and a
SCI of  data S ,  t he  ?Ilirlimuttl dcscriplim Ictlglll pritlciple
(MIJ1 .1’) calls for sclcdins the hypotbcsis 1/7’ for wbicll
Ml ,ct@h(HT)  + Ml mgth(SllfT) is nlinilnal an~(~m lhC
Set of Ilypothcscs. MI .cmgth(HT)  denotes the length of the
minimal pmsibk cncdirrg of If T, while Ml mgth(SlllY’)
is the lcn~th of the minimal cncmling  of the clala given the
hypothesis.

1 jot convcnicncc., we assume lengths arc nmasLIre.d  in l~ilLs.
‘1’hc  Cmcoding of the data given lbc ]Iypotbcsis  may be thoLl,@t
of as encoding the. clata points that arc the “cxccptions”  to the
Ilypothcsis  I/Y’. If 117’ fits the data exactly, then the Iallcr
(cl’Ill goes to X10.

‘1’hc Ml)] J’ principle is not acccssarily calling for s(mm-
thing {iiffcmnt  from tile dccisicm criteria ciiscussc(i car]icr.  It
can bc easily siKJwn  tilat ti}e Ml)] J’ ami the IIaycsian risk

]ninimimt ion st ratcgy (un(ier  the assumptic)n  of Llniform m or
cost) arc tilcorctically rdatc.d to cac.h other. 1 ‘or iack of space.
wc o]nit tile cicrivation which simply consisls of cxpanciing
tile expression for tile number of bits ncc.cicci to specify ti]c
ilyiwtlm.sis  lf given tile (iata S: - log~(I’rmb{l/l  S}), using
]Iaycs’  ILIIC.  ‘1’hc fioai cxpre.ssicm  obtained is cquivaicat to
ti)c. Ml)],]’,  ‘1’his wiii serve as motivation for adopting tile
Mi)l,I’  since it r’c(iuccs the at’bitrarinms of oLlr adoptin~ il
ovc.r sotnc other hc.uristic  for cicc.i(iing when to refrain from
fLIitlle.l-  ixwlil ionin:,.

IIavxi  on out earlier arguments, if wc ilacl a way of fincii ng
the trucmininml cncmiing Icagth of ilyimtimscs  an(i of tilcdata
given a ilypotimsis, then employing tiw Ml)] J’ for selecting
(mc of a set of cmnpcting hypothcse.s  lc.a(is to choosing the
ilypo(hcsis  witil ti~e maximum a pmterio?i probability (given
tile.data). C:()llsc(iLlct~ tly, tllisis  ec]llivalct~tt ott]cl'li C:(iccisi()tl
clitcrion. ‘J’his tncans  that the. sclcctcci ilypotilmis  wiii bc
tiw onc wi~icil minimims  the. probability of havins nwic  tim
wrong sclc.ction (incision. llowcvcr,  inthcphysical  wor](iwc.
(io not ilavc access to the. probability (iistribu(ims.  llcncc,
tile MI J1 .1’ is usc(i as an c.stimak of cost, or a ilc.uristie, for
(iistinguishi  np, bctwecn  hyimti~cscs.

3.3 A])  I)]yi])g tl~c MI) I.1’:A Coding l’roblcm
N()wtllcl~rc}l~lctl~  :ittl:it~di  sac()(ii~lgl }robict]~.  lnourcasc.,thc
decision problcm  isrclativc.ly  sitnplc. ‘J’hc  SC1 of compct i ng
llyl>()tilcse.s  cotlt:iit]s  exactly twoclelllc.llts: {117’, N7’}.  Wc
silall employ tile fmnulaticm  usc.(i  by Quinlan  an(i Rivest I Id]
wim’c timy uscci tim MI)I l’ in attribLltc sc]cc[ion in an atlmilt
to gcacralc comimcl  ciccision trees (see [ 181 for a COnlmcntaly
on [i4]).  lnourcaw, tilc~~rc)bletl~  is for[llr~ateiysit l~l)lcl.

llsingthc formulationof  1141, tilcproblcm  that ncmis to
l~csolvc(i is:tc~)l~~l~lLttlicat iot~problctl~.  ‘1’hcgoai is to con-

municatc  a nwthoci  (classifier), that will enable tile rcccivcr
t(~cictcrll~i~~e.t  llc.cl:iss  liibclsc)ftilccx(tll~l~lcs  inthc set. It is
assunwci tilat a se. nrkr hasthccatirc set [) ftr:iirlil~g  cx:ltll[lles,
whilcarxmivcr ilasthccxamplm witiloLlt tilcir claw labcis.
‘1’hc scndm needs (0 convey the proper ciass label i ng of tbc cx-
ampic set to the rcccivcr. ‘1’hc scmicr ]nust  essentially ciwosc
the simtlcsl  cicscription for specifying tile classes.
Coding the Null ‘J’hcory  N7’ : la tlwcascof  N7’, timsctdcr
inusl simply transmit tile classes of the examples in .q in
scqucncc. ‘I’llcsct~(icr sct~(ls N mc.ssagcs, c:lcl~bc.it]gtlcc)cicci
ciaw label (where N = I.!$I).  ‘l{) cncmle  tile classes  of tile
cxattll>lcs in S,wclll:tyt lscatloi Jtilll:il(e.g. llLlfftll:ltlc(JClitlg)
al~orithm  [161 10 prociLlcc  cocic optimimd for avmrgc co(ic
lcmg[i).  Sitlccwc.  tlavct()t r:ltlstllitt tlccl:l$sf ()rc:lclle  .xzilllllle.
inthcsct .$, t)~Llltii~iyit~ gtt~c:i\'crage c()(iclct~gtil/by  N gives
us tiw total COSI  of transmitting tilcclasse.s of tile cxaml)lcs
in S. In a(i(iition,  one ne.c.(is to transmit tile’’co(icb{)ok”to
bcLlsc(! illcicc[)(iitl&,  tilccl:lsscs.  ‘I’lat~stl]ittii  }gti~cco(ic.book”
c(ltlsists  cJfsctl(ii llgtitc  c(~cicw'c)r(i:iss() ciate(i with each class.
}Icncc, ifthcrcam.k clawcs ti~cicng,thof  tilccmicbook is
cs[inlatc(i  by (k . 1). Note that k is a conslant that cims not
grow with N, so the cost of ti]c cmie hook is a small constant
ovcrh ca(i.
Coditlg the l’arlition 117’: ‘1’hc cut point ciloscn to parli-
i ion tile cxami]lcs mus[  be spccificd by ti]c scncicr followed by
an cncmiing of tile clawc.s in each of tile two subsets. Spcci -
fYit)g[lle  cltt\:llLlcc os(siog,2(N-”  l) bitssincc  wcnc.cd(miy
s]~ccify(l]lc.oftllcN  - 1 e.xample.s in tl]csc(iLlcl~cc w’llicl]  ti]c
CLIt Val UC. fill ]S ~LISt before. (01 afkl).

‘1’hc classifier }fT corresponding to the binary partition,
n?,, partitions ti~c set S into sLtbsc.ts S1 aa(i Sj.  What the
scncim mLlst transmit, then, is a specification of the.cat point
foiiowc~i by tilcscqLtcncc  of classes  in S’] followc~i by tho
classes in S2. Again, all wc arc intc.rcste.{i  in dc.tcrininin.g is
li]clniniinai  ii\’cl:igcl  ctlgtilc C)(icfotti  lccl:lsscs iaSl ami Sz
aswccii(i  illtl~c c:lseofc tlco(iillgttl cclasscs in S. IJct l] ami
12 bc tile tninitnal ave.rage cmic Icngtils  (in bits) for ti}c classes
inSt and S?rcsilcctivcly.  “I’hc cost oftr:ltlslllitti tlg117’:llC)llg
with tiw (iata given I/Y’ is

log2(N- 1)-I lS1l.~t -i lS21Ch bits.

Wc also ncmi to transmit the eo(ic books for the. rmpccti  vc
co(iings ci]oscn for thcclasm in SI aaci .$?. Unlikcthccasc  of
transmitting S wllcrc we knew tilat all k classes arc present, in
this case wc must inform tile. re.cci vcr which subset of clawcs
is present in caci) of tim two subsets S1 and S2, an(i then sen(i
tim rcspc.etivc  cmic books. Since wc know that our parliticm
is nontrivial, i.e. SI + S? + 0, we know tilat SI can ilavc
any Onc of ?k - i possible subsc.(s of tbc. k classes. lJsing a
Icng,thy (icrivation, it can be sl]own that

[ 1
k-  I

c:, : >: (:,)2” -12k-l:3k-2
k,= t

is ti)c nLlnlbcr of possible partitions oLlt of which wc ncmi
to spc.cify o n e .  IIcncc w c  nu-xi log~ (C~k)  bits. N[)tc that

h~?(~k)  <  210S2 (2k - ]) < ?k.

3 . 4  ‘J’hc ])ccision Crilcrion
in oLlr quest for the “cmmcl”  (iccision  rcgmling  whctimr  or not
to par(it ion a gi  VCII subset furtiw,  wc appcalcci to tile M 111 J’.
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‘Jab]c  1: lktails of (IK I Ma Sets Used..
l)aia Sri
}:aLIIIy  opcmtion chta flmn (IIC JPI .I)ccp  Space NctwoIk ankwna  con[mllcr

pmbkms in a rcactivc ion etching process (Rli?) in scmicondaclor nMnLl-
faclurins, from 1 ]aghcs Ait-cmf(  C~~npany
‘1’hc wavcforln domain dcscribcd in [1]
Ilita obtained fronl a rcsprrnsc sarfacc of mal(iplc response variables in a
scl of wafer clching cxpcrimcnk  condaclcd al 1 Iagbcs
RSM 1 with classes mapped to only IWO valacs: “good” and “tract”
l’ablicly available heal-[ ctiscasc medical data from an institu(c.  in (!lc.vc.tand
‘1’hc  glass (ypcs clata flmn lhc USA I~orcosic Scic.acc Scrvicc
‘1’hc famous iris classilicalirm da[a used by R.A. J~ishcr (1936)
‘1’hc cchocardiogram dala or heart diseases from the Reed lns(i[ak c)f hfiami

la lLIIn, ltlis gave us a coding problc.m to solve. ‘1’hc sol Lllion
is rca(ii i y avai lablc from i nformmlion lile.ory, cf. lluf~man
cmiing. JIowe.vcr,  wc are not inlcrcste.~i in the aclual mininlal
cmic itself. ‘J’hc only tiling wc need to know is tile avcra~c
]cnglil of the minimal cock. ‘J’hc  following timrmn  gives  LIS

lilis infortnatirrn ciircctly  anti in ti)c general case.

‘1’hmrwn  2 C;ivca  a sOtfrcc Of  mcs .sages  s  wi~h catro~)y
) W(s), for” atty c > (), fhcl’c mists  an Op(imd Cltcodiltg  of
lhc  ]ttcssagcs  Ofs such tha/ the avtmgc message code Icag[h
/, ia bits,  is Stldi lha[ Jht(s) < / < ];IJt(s) -[ c.
l’roof Scc Shrrnnon’s N o i s e l e s s  [kiing ‘lheorwn in [9]. [ I

Note. [bat [his  thcorwn  requires that the entroi~y  lint(S)
bc cicfinc(i using logariti]ms  to ti)c bnsc 2. In the. case of oar
sitl)plc c(~ll~ll~tlrlica[iot~ problctn,  tbc source of messages is the
semicr an(i ti)c messages are. the cncmic(i  classes. ‘1’hcoretll  2
tells us, that “WC can bring tk average  cocic word  lcng(il 1 as
close as we. please to ti)c cntroi~y” of tile SOL1l’CC  [91.

1 d 1 Ix tlm avcrasc ]cngtil  of tim cmic cl)crscn  to re.prcstmt
tim c]asscs in S. Silnilarly,  11 an(i 1? arc the cortcsponciing
average cmic lc.ngtits for St an(i S?. l’utt i ng ail tile (icrivcd
COSIS  togctllm wc obtain:

COSI(N71) : IV. lht(S) -I k .  l;nt(S)

(:ost(}i’1’) = k)g7(N-  1)+ lS,l.lint(S, )+ lSa\.lh)t(S2)

-1 log2 (V - 2) + k]lht(s])  -1 k?l{nt(s?).

‘1’llc  M l  )1 ,1’ imscribcs rrcccpting  tim parli(ion ifl
(kst(l/T) < {k)st(N?’). l;xatninc tilcconciition  ua(icr wilicil
[[lrsl(m’)  - (:ost(m)] > ():

o < Nlint(s) - Is, I . IM(s[)  - [s~l . IM(SZ)

- Iogq (N - 1)+ MM(S) - log2 (3k - 2 )

- kjlhlt(s[) - ktlhlt(sz)

Now rwcall  that tllc information gain of a cat point is

G’ain(fl , 1’; s) = lht(s) - E(A, 7’; s)
~i,,t($) _ !s,1 1s21

. lhlt(St) - -N lmt(S~).
N

“1’ltc nbovc. inequality, aftc.r ciivi(iing ti~roLigi~  by N, rcciLlccs to

log,2 (N - I )
Gain(A,  T; s) - - ~

> A(A,  T; S)
N

wilcrc A(A, 7’; S) :

k)g2 (Y - 2) - [Hint(s) - k,llnt(s[) - k?linl(sz)]
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We arc now rca(iy to stale cwr (iccisirrn cl-itcrion for accc.pt-
ing or rcjcclin~  a given partition ba~cci on titc Ml)] ,1’:

NII)I.1’C Criterion: ‘1’hc imr[ition in(iucc(i by a cut iwint
T for a set S of N examples is acccptc.(i iff

k)g2 (N 1)
GairL(fl, T; s) >- N _, A(A,  T; S )

N

I ao(i it is rc.lcctc(i otivsrwisc.. I
Note tilat tile qLlantitics rc.quirccl to cvalLlatc this criterion,

namely the infottnation entropy of S, S1, an(i S2 arc cotm
i~ulc(i by tile cat point scicct ion ai~oritilm as part of CLIt point
e.valuat ion.

4  ]Cmpirical  ICvaluation
Wc comimrc fmtr  (iiffcrcn(  (iccision slratcgics for ciccidirrg
wdmtilcr or nol to accept a parlit ion. 1 ior each ciata set uscci,
wc ran four variations of tile. aigorith[l~ using each of tile
fol Icrwi  ng clilcria:

z. .

4

Never ~ttt: tile ori~in;il  binary interval algolitilm.
Always Cut: always accept a CLIt unless ail examples
have tile same class or tile same valttc. for ti)c attribute.
Random  cut : accept or reject ran(iomiy based on
flipping a fair coin.
Ml)].]’  {;u(: the (icrivcci MIJ1 .i’(; critction.

‘1’hc  first t ilrc.c st ratcgics  rcimxcnt si tnplc aitcrnativc ciccision
slratcgics  ti]nt aiso cwvcr the coat inuutn of cicci sion st ratcgic.s
since the first two arc. tile two cxtrcma,

Wc usc{i the ciata scls (icscribcci in ‘lhblc  1. Sotnc of the.se.
wctc obt ai rmi from t hc. U.[~.  lrvinc Macilinc 1,carning  Rcpos-
itmy an(i olilcrs flotn out- own in(iastliai applications of ma-
chi nc icarni ng (icscribcxi in [ 101. ‘1’hc.  (iata sc.ts rcimsent  a
mixtarcof  cil:it(ictetistics ranging from fcw c]asscs with many
atttibLltcs to many clawcs with fcw attribute.s.

1 ‘or each ciatfi set, wc ramlotnl y sampled a training subset
anti usc(i the rest of the, set for trx(ing. I ‘or c.ach ciat a S C.( wc
repeat cd lI)c sampling pt-occciarc fo]iowc(i  by gctmat  i ng the,
(rcc an(i tcsti ng it 1 () t i mcs. ‘l”hc rcsL]lls rcporkci  arc in tc.rms
of tile average. number of Icavcs an(i pcrumlagc  crmr ralc on
classifying the test sets. ‘1’hc rcsLtlts alc shown in l;igurc 3.
Note that there is no (iiffcrcncc bctwc.cn the tree generate.d by
GII)3* ua(icr tile Ncvm (M sttatcgy and the tree gcncratc(i
by ti]c 11)3 algoritilrn. ‘1’bus, titosc colulntls in the charts raay
bc take.n to rcftcct 1113’s  pcrfortnancc.  1 kw case of cmnpar-
i son, wc plot the rcsLllts in tcrtns of ratios of error rate an(i
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number of leaves of (Iw various mt stratcgie.s  (o tbc MIJI  .1’
(lUI s(tatcgy. Note. that the inqmrvcmcnts  arc generally sig-
nificant. ‘1’hc dala set RSM 1 provrxl a 1 ittle problematic for
tbc M I )1 .1’(;. onc possible rcawrn is that the nLln~bcr  of classes
is larp,c. and the nLlnlbcr of training examples is probably  not
so f(icicnt  to make the rccol~~l)lcn(i:ttions  of the MIJI  .l’C critc.-
lion meaningful. Note that this hypotbcsis is consistent with
[he. fact that performance dranlatically improved for the. set
RSM2 which is the same da~a set bLlt with only IWO clawcs.

S (kmclusion
WC. have prcscntccl  results regarding coat i noous-valocd  at-
tribLllc discrcli7ation  using the information entropy minimim
tion Ilcolistic.  ‘1’hc results point OLI!  desirable bcbrrvior  on the.
part of Il)c heuristic which in turn serves as furlbc.r  thcrrrcti-
cwl su[)potl for the nwrit of the information cn[ropy hc.uristic.
10 addition, tk cfficic.ncy of the cLlt point selection hcoristic
can bc iocrcascd  without changing the final OLIICCMNC  of the
algorithm in any way. ~lassification  learning algorithms that
usc tl}c information entropy nlinimi~ation  hcLlristic for sclcct-
i ng, CUI  poin~s can benefit from tbcsc rmLllts. Wc also used
tlm results  as a basis for generalizing the algorithm to mLll-
t ij~lc interval (iiscrctixd ion. Wc clcrivc a clc.cision criterion
based on information and dccisirm tbeorc(ic  notions to dccidc
wllcllm  to split a given interval furlbcr. Coupled with formal
alf,ut))cr)ts  supporting this criterion, wc prcscntccl clnpirical
resolts  showing that moltiplc interval ciiscreti~ation algorithm
indeed allows us to construct better clccision trees from the
salnc data.
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